vllm.entrypoints.chat_utils
ChatCompletionContentPartParam module-attribute ¶
ChatCompletionContentPartParam: TypeAlias = Union[
ChatCompletionContentPartParam,
ChatCompletionContentPartAudioParam,
ChatCompletionContentPartInputAudioParam,
ChatCompletionContentPartVideoParam,
ChatCompletionContentPartRefusalParam,
CustomChatCompletionContentPILImageParam,
CustomChatCompletionContentSimpleImageParam,
ChatCompletionContentPartImageEmbedsParam,
CustomChatCompletionContentSimpleAudioParam,
CustomChatCompletionContentSimpleVideoParam,
str,
CustomThinkCompletionContentParam,
]
ChatCompletionMessageParam module-attribute ¶
ChatCompletionMessageParam = Union[
ChatCompletionMessageParam,
CustomChatCompletionMessageParam,
Message,
]
ChatTemplateContentFormatOption module-attribute ¶
ChatTemplateContentFormatOption = Literal[
"auto", "string", "openai"
]
MM_PARSER_MAP module-attribute ¶
MM_PARSER_MAP: dict[
str,
Callable[
[ChatCompletionContentPartParam], _ContentPart
],
] = {
"text": lambda part: get("text", None),
"thinking": lambda part: get("thinking", None),
"input_text": lambda part: get("text", None),
"input_image": lambda part: get("image_url", None),
"image_url": lambda part: get("url", None),
"image_embeds": lambda part: get("image_embeds", None),
"image_pil": lambda part: get("image_pil", None),
"audio_url": lambda part: get("url", None),
"input_audio": lambda part: get("input_audio", None),
"refusal": lambda part: get("refusal", None),
"video_url": lambda part: get("url", None),
}
MODALITY_PLACEHOLDERS_MAP module-attribute ¶
MODALITY_PLACEHOLDERS_MAP = {
"image": "<##IMAGE##>",
"audio": "<##AUDIO##>",
"video": "<##VIDEO##>",
}
VALID_MESSAGE_CONTENT_MM_PART_TYPES module-attribute ¶
VALID_MESSAGE_CONTENT_MM_PART_TYPES = (
"text",
"refusal",
"image_url",
"image_embeds",
"image_pil",
"audio_url",
"input_audio",
"video_url",
)
_AssistantParser module-attribute ¶
_ChatTemplateContentFormat module-attribute ¶
_ChatTemplateContentFormat = Literal['string', 'openai']
_ContentPart module-attribute ¶
_ImageEmbedsParser module-attribute ¶
_ImageEmbedsParser = partial(
cast, ChatCompletionContentPartImageEmbedsParam
)
_InputAudioParser module-attribute ¶
_PILImageParser module-attribute ¶
_PILImageParser = partial(
cast, CustomChatCompletionContentPILImageParam
)
_RefusalParser module-attribute ¶
_cached_load_chat_template module-attribute ¶
_cached_load_chat_template = lru_cache(_load_chat_template)
AsyncMultiModalContentParser ¶
Bases: BaseMultiModalContentParser
Source code in vllm/entrypoints/chat_utils.py
_connector instance-attribute ¶
_connector = MediaConnector(
media_io_kwargs=media_io_kwargs,
allowed_local_media_path=allowed_local_media_path,
)
__init__ ¶
__init__(tracker: AsyncMultiModalItemTracker) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_image_embeds ¶
Source code in vllm/entrypoints/chat_utils.py
parse_image_pil ¶
parse_image_pil(image_pil: Image) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_input_audio ¶
Source code in vllm/entrypoints/chat_utils.py
AsyncMultiModalItemTracker ¶
Bases: BaseMultiModalItemTracker[Awaitable[object]]
Source code in vllm/entrypoints/chat_utils.py
all_mm_data async ¶
all_mm_data() -> Optional[MultiModalDataDict]
Source code in vllm/entrypoints/chat_utils.py
create_parser ¶
create_parser() -> BaseMultiModalContentParser
BaseMultiModalContentParser ¶
Bases: ABC
Source code in vllm/entrypoints/chat_utils.py
__init__ ¶
Source code in vllm/entrypoints/chat_utils.py
_add_placeholder ¶
_add_placeholder(
modality: ModalityStr, placeholder: Optional[str]
)
mm_placeholder_storage ¶
parse_image_embeds abstractmethod ¶
parse_input_audio abstractmethod ¶
BaseMultiModalItemTracker ¶
Tracks multi-modal items in a given request and ensures that the number of multi-modal items in a given request does not exceed the configured maximum per prompt.
Source code in vllm/entrypoints/chat_utils.py
__init__ ¶
__init__(
model_config: ModelConfig, tokenizer: AnyTokenizer
)
add ¶
add(modality: ModalityStr, item: _T) -> Optional[str]
Add a multi-modal item to the current prompt and returns the placeholder string to use, if any.
Source code in vllm/entrypoints/chat_utils.py
create_parser abstractmethod ¶
create_parser() -> BaseMultiModalContentParser
ChatCompletionContentPartAudioParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ChatCompletionContentPartImageEmbedsParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ChatCompletionContentPartVideoParam ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
ConversationMessage ¶
Bases: TypedDict
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentPILImageParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a PIL image.
Example: { "image_pil": ImageAsset('cherry_blossom').pil_image }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleAudioParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain audio_url.
Example: { "audio_url": "https://example.com/audio.mp3" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleImageParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain image_url. This is supported by OpenAI API, although it is not documented.
Example: { "image_url": "https://example.com/image.jpg" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionContentSimpleVideoParam ¶
Bases: TypedDict
A simpler version of the param that only accepts a plain audio_url.
Example: { "video_url": "https://example.com/video.mp4" }
Source code in vllm/entrypoints/chat_utils.py
CustomChatCompletionMessageParam ¶
Bases: TypedDict
Enables custom roles in the Chat Completion API.
Source code in vllm/entrypoints/chat_utils.py
content instance-attribute ¶
content: Union[str, list[ChatCompletionContentPartParam]]
The contents of the message.
name instance-attribute ¶
name: str
An optional name for the participant.
Provides the model information to differentiate between participants of the same role.
tool_call_id instance-attribute ¶
Tool call that this message is responding to.
CustomThinkCompletionContentParam ¶
Bases: TypedDict
A Think Completion Content Param that accepts a plain text and a boolean.
Example: { "thinking": "I am thinking about the answer", "closed": True, "type": "thinking" }
Source code in vllm/entrypoints/chat_utils.py
MultiModalContentParser ¶
Bases: BaseMultiModalContentParser
Source code in vllm/entrypoints/chat_utils.py
_connector instance-attribute ¶
_connector = MediaConnector(
media_io_kwargs=media_io_kwargs,
allowed_local_media_path=allowed_local_media_path,
)
__init__ ¶
__init__(tracker: MultiModalItemTracker) -> None
Source code in vllm/entrypoints/chat_utils.py
parse_image_embeds ¶
Source code in vllm/entrypoints/chat_utils.py
parse_input_audio ¶
Source code in vllm/entrypoints/chat_utils.py
MultiModalItemTracker ¶
Bases: BaseMultiModalItemTracker[object]
Source code in vllm/entrypoints/chat_utils.py
all_mm_data ¶
all_mm_data() -> Optional[MultiModalDataDict]
Source code in vllm/entrypoints/chat_utils.py
create_parser ¶
create_parser() -> BaseMultiModalContentParser
PILImage ¶
Bases: BaseModel
A PIL.Image.Image object.
Source code in vllm/entrypoints/chat_utils.py
_detect_content_format cached ¶
_detect_content_format(
chat_template: str,
*,
default: _ChatTemplateContentFormat,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
_get_full_multimodal_text_prompt ¶
_get_full_multimodal_text_prompt(
placeholder_storage: dict[str, list],
texts: list[str],
interleave_strings: bool,
) -> str
Combine multimodal prompts for a multimodal language model.
Source code in vllm/entrypoints/chat_utils.py
_get_interleaved_text_prompt ¶
Source code in vllm/entrypoints/chat_utils.py
_is_attr_access ¶
Source code in vllm/entrypoints/chat_utils.py
_is_var_access ¶
_is_var_or_elems_access ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_content_item ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_messages_item ¶
Source code in vllm/entrypoints/chat_utils.py
_iter_nodes_assign_var_or_elems ¶
_iter_nodes_assign_var_or_elems(root: Node, varname: str)
Source code in vllm/entrypoints/chat_utils.py
_load_chat_template ¶
_load_chat_template(
chat_template: Optional[Union[Path, str]],
*,
is_literal: bool = False,
) -> Optional[str]
Source code in vllm/entrypoints/chat_utils.py
_log_chat_template_content_format cached ¶
_log_chat_template_content_format(
chat_template: Optional[str],
given_format: ChatTemplateContentFormatOption,
detected_format: ChatTemplateContentFormatOption,
)
Source code in vllm/entrypoints/chat_utils.py
_parse_chat_message_content ¶
_parse_chat_message_content(
message: ChatCompletionMessageParam,
mm_tracker: BaseMultiModalItemTracker,
content_format: _ChatTemplateContentFormat,
interleave_strings: bool,
) -> list[ConversationMessage]
Source code in vllm/entrypoints/chat_utils.py
_parse_chat_message_content_mm_part ¶
_parse_chat_message_content_mm_part(
part: ChatCompletionContentPartParam,
) -> tuple[str, _ContentPart]
Parses a given multi-modal content part based on its type.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
part | ChatCompletionContentPartParam | A dict containing the content part, with a potential 'type' field. | required |
Returns:
| Type | Description |
|---|---|
str | A tuple (part_type, content) where: |
_ContentPart |
|
tuple[str, _ContentPart] |
|
Raises:
| Type | Description |
|---|---|
ValueError | If the 'type' field is missing and no direct URL is found. |
Source code in vllm/entrypoints/chat_utils.py
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 | |
_parse_chat_message_content_part ¶
_parse_chat_message_content_part(
part: ChatCompletionContentPartParam,
mm_parser: BaseMultiModalContentParser,
*,
wrap_dicts: bool,
interleave_strings: bool,
) -> Optional[_ContentPart]
Parses a single part of a conversation. If wrap_dicts is True, structured dictionary pieces for texts and images will be wrapped in dictionaries, i.e., {"type": "text", "text", ...} and {"type": "image"}, respectively. Otherwise multimodal data will be handled by mm_parser, and texts will be returned as strings to be joined with multimodal placeholders.
Source code in vllm/entrypoints/chat_utils.py
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 | |
_parse_chat_message_content_parts ¶
_parse_chat_message_content_parts(
role: str,
parts: Iterable[ChatCompletionContentPartParam],
mm_tracker: BaseMultiModalItemTracker,
*,
wrap_dicts: bool,
interleave_strings: bool,
) -> list[ConversationMessage]
Source code in vllm/entrypoints/chat_utils.py
_postprocess_messages ¶
_postprocess_messages(
messages: list[ConversationMessage],
) -> None
Source code in vllm/entrypoints/chat_utils.py
_resolve_chat_template_content_format ¶
_resolve_chat_template_content_format(
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
tokenizer: AnyTokenizer,
*,
model_config: ModelConfig,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
_try_extract_ast ¶
Source code in vllm/entrypoints/chat_utils.py
apply_hf_chat_template ¶
apply_hf_chat_template(
tokenizer: Union[
PreTrainedTokenizer, PreTrainedTokenizerFast
],
conversation: list[ConversationMessage],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
*,
model_config: ModelConfig,
tokenize: bool = False,
**kwargs: Any,
) -> str
Source code in vllm/entrypoints/chat_utils.py
apply_mistral_chat_template ¶
apply_mistral_chat_template(
tokenizer: MistralTokenizer,
messages: list[ChatCompletionMessageParam],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
**kwargs: Any,
) -> list[int]
Source code in vllm/entrypoints/chat_utils.py
get_history_tool_calls_cnt ¶
get_history_tool_calls_cnt(
conversation: list[ConversationMessage],
)
Source code in vllm/entrypoints/chat_utils.py
load_chat_template ¶
parse_chat_messages ¶
parse_chat_messages(
messages: list[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
content_format: _ChatTemplateContentFormat,
) -> tuple[
list[ConversationMessage], Optional[MultiModalDataDict]
]
Source code in vllm/entrypoints/chat_utils.py
parse_chat_messages_futures ¶
parse_chat_messages_futures(
messages: list[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
content_format: _ChatTemplateContentFormat,
) -> tuple[
list[ConversationMessage],
Awaitable[Optional[MultiModalDataDict]],
]
Source code in vllm/entrypoints/chat_utils.py
resolve_chat_template_content_format ¶
resolve_chat_template_content_format(
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
given_format: ChatTemplateContentFormatOption,
tokenizer: AnyTokenizer,
*,
model_config: ModelConfig,
) -> _ChatTemplateContentFormat
Source code in vllm/entrypoints/chat_utils.py
resolve_hf_chat_template ¶
resolve_hf_chat_template(
tokenizer: Union[
PreTrainedTokenizer, PreTrainedTokenizerFast
],
chat_template: Optional[str],
tools: Optional[list[dict[str, Any]]],
*,
model_config: ModelConfig,
) -> Optional[str]
Source code in vllm/entrypoints/chat_utils.py
resolve_mistral_chat_template ¶
Source code in vllm/entrypoints/chat_utils.py
validate_chat_template ¶
Raises if the provided chat template appears invalid.